Noções de Probabilidade
Noções de Probabilidade
(ENEM - 2024 - Probabilidade) Uma empresa tem 400 funcionários, distribuídos em três setores: administrativo, logística e produção. O gráfico apresenta a distribuição quantitativa desses funcionários, por setor e por faixa etária.
Uma viagem de férias será sorteada entre esses funcionários, de forma que todos terão igual probabilidade de serem sorteados.
A maior probabilidade é que o funcionário sorteado esteja na faixa etária
A) entre 25 e 45 anos, pois é a faixa etária com maior quantidade de funcionários.
B) entre 25 e 45 anos, pois é a única faixa etária cujas porcentagens são maiores do que as porcentagens mínimas de cada setor.
C) até 25 anos, pois é a única faixa etária cujos percentuais associados aos setores aumentam com o aumento da quantidade de funcionários por setor.
D) até 25 anos, pois é a faixa etária que apresenta maior quantidade de funcionários no setor de produção, que é o setor que emprega metade dos funcionários dessa empresa.
E) a partir de 45 anos, pois a soma das porcentagens associadas a essa faixa etária é 110%, que é maior do que as respectivas somas associadas às outras faixas etárias, que são 105% e 85%.
(ENEM - 2024 - Probabilidade) A criptografia refere-se à construção e análise de protocolos que impedem terceiros de lerem mensagens privadas. Júlio César, imperador romano, utilizava um código para proteger as mensagens enviadas a seus generais. Assim, se a mensagem caísse em mãos inimigas, a informação não poderia ser compreendida. Nesse código, cada letra do alfabeto era substituída pela letra três posições à frente, ou seja, o “A” era substituído pelo “D”, o “B” pelo “E”, o “C” pelo “F”, e assim sucessivamente.
Qualquer código que tenha um padrão de substituição de letras como o descrito é considerado uma Cifra de César ou um Código de César. Note que, para decifrar uma Cifra de César, basta descobrir por qual letra o “A” foi substituído, pois isso define todas as demais substituições a serem feitas. Uma mensagem, em um alfabeto de 26 letras, foi codificada usando uma Cifra de César. Considere a probabilidade de se descobrir, aleatoriamente, o padrão utilizado nessa codificação, e que uma tentativa frustrada deverá ser eliminada nas tentativas seguintes.
A probabilidade de se descobrir o padrão dessa Cifra de César apenas na terceira tentativa é dada por
(ENEM - 2024 - Probabilidade) Para melhorar o fluxo de ônibus em uma avenida que tem dois semáforos, a prefeitura reduzirá o tempo em que cada sinal ficará vermelho, que atualmente é de 15 segundos a cada 60 segundos. Admita que o instante de chegada de um ônibus a cada semáforo é aleatório. O engenheiro de tráfego da prefeitura calculou a probabilidade de um ônibus encontrar cada um deles vermelho, obtendo 15/60. A partir daí, estabeleceu uma mesma redução na quantidade do tempo, em segundo, em que cada sinal ficará vermelho, de maneira que a probabilidade de um ônibus encontrar ambos os sinais vermelhos numa mesma viagem seja igual a 4/100, considerando os eventos independentes.
Para isso, a redução do tempo em que o sinal ficará vermelho, em segundo, estabelecida pelo engenheiro foi de
A) 1,35.
B) 3,00.
C) 9,00.
D) 12,60.
E) 13,80.
(ENEM - 2023 - Probabilidade) Visando atrair mais clientes, o gerente de uma loja anunciou uma promoção em que cada cliente que realizar uma compra pode ganhar um voucher para ser usado em sua próxima compra. Para ganhar seu voucher, o cliente precisa retirar, ao acaso, uma bolinha de dentro de cada uma das duas urnas A e B disponibilizadas pelo gerente, nas quais há apenas bolinhas pretas e brancas. Atualmente, a probabilidade de se escolher, ao acaso, uma bolinha preta na urna A é igual a 20% e a probabilidade de se escolher uma bolinha preta na urna B é 25%. Ganha o voucher o cliente que retirar duas bolinhas pretas, uma de cada urna.
Com o passar dos dias, o gerente percebeu que, para a promoção ser viável aos negócios, era preciso alterar a probabilidade de acerto do cliente sem alterar a regra da promoção. Para isso, resolveu alterar a quantidade de bolinhas brancas na urna B de forma que a probabilidade de um cliente ganhar o voucher passasse a ser menor ou igual a 1%. Sabe-se que a urna B tem 4 bolinhas pretas e que, em ambas as urnas, todas as bolinhas têm a mesma probabilidade de serem retiradas.
Qual é o número mínimo de bolinhas brancas que o gerente deve adicionar à urna B?
A) 20.
B) 60.
C) 64.
D) 68.
E) 80.
(ENEM - 2023 - Probabilidade) Em um colégio público, a admissão no primeiro ano se dá por sorteio. Neste ano há 55 candidatos, cujas inscrições são numeradas de 01 a 55. O sorteio de cada número de inscrição será realizado em etapas, utilizando-se duas urnas. Da primeira urna será sorteada uma bola, dentre bolas numeradas de 0 a 9, que representará o algarismo das unidades do número de inscrição a ser sorteado e, em seguida, da segunda urna, será sorteada uma bola para representar o algarismo das dezenas desse número. Depois do primeiro sorteio, e antes de se sortear o algarismo das dezenas, as bolas que estarão presentes na segunda urna serão apenas aquelas cujos números formam, com o algarismo já sorteado, um número de 01 a 55.
As probabilidades de os candidatos de inscrição número 50 e 02 serem sorteados são, respectivamente,
(ENEM - 2023 - Análise Combinatória/Probabilidade) Ao realizar o cadastro em um aplicativo de investimentos, foi solicitado ao usuário que criasse uma senha, sendo permitido o uso somente dos seguintes caracteres:
• algarismos de 0 a 9;
• 26 letras minúsculas do alfabeto;
• 26 letras maiúsculas do alfabeto;
• 6 caracteres especiais !, @, #, $, *, &.
Três tipos de estruturas para senha foram apresentadas ao usuário:
• tipo I: formada por quaisquer quatro caracteres distintos, escolhidos dentre os permitidos;
• tipo II: formada por cinco caracteres distintos, iniciando por três letras, seguidas por um algarismo e, ao final, um caractere especial;
• tipo III: formada por seis caracteres distintos, iniciando por duas letras, seguidas por dois algarismos e, ao final, dois caracteres especiais.
Considere p1, p2 e p3 as probabilidades de se descobrirem ao acaso, na primeira tentativa, as senhas dos tipos I, II e III, respectivamente. Nessas condições, o tipo de senha que apresenta a menor probabilidade de ser descoberta ao acaso, na primeira tentativa, é o
A) tipo I, pois p1 < p2 < p3.
B) tipo I, pois tem menor quantidade de caracteres.
C) tipo II, pois tem maior quantidade de letras.
D) tipo III, pois p3 < p2 < p1 .
E) tipo III, pois tem maior quantidade de caracteres.
(ENEM - 2023 - Probabilidade) No alojamento de uma universidade, há alguns quartos com o padrão superior ao dos demais. Um desses quartos ficou disponível, e muitos estudantes se candidataram para morar no local. Para escolher quem ficará com o quarto, um sorteio será realizado. Para esse sorteio, cartões individuais com os nomes de todos os estudantes inscritos serão depositados em uma urna, sendo que, para cada estudante de primeiro ano, será depositado um único cartão com seu nome; para cada estudante de segundo ano, dois cartões com seu nome; e, para cada estudante de terceiro ano, três cartões com seu nome. Foram inscritos 200 estudantes de primeiro ano, 150 de segundo ano e 100 de terceiro ano. Todos os cartões têm a mesma probabilidade de serem sorteados.
Qual a probabilidade de o vencedor do sorteio ser um estudante de terceiro ano?
A) 1/2.
B) 1/3.
C) 1/8.
D) 2/9.
E) 3/8.
(ENEM - 2022 - Probabilidade) A World Series é a decisão do campeonato norte-americano de beisebol. Os dois times que chegam a essa fase jogam, entre si, até sete partidas. O primeiro desses times que completar quatro vitórias é declarado campeão. Considere que, em todas as partidas, a probabilidade de qualquer um dos dois times vencer é sempre 1/2. Qual é a probabilidade de o time campeão ser aquele que venceu a primeira partida da World Series?
A) 35/64.
B) 40/64.
C) 42?64.
D) 44/64.
E) 52/64.
(ENEM - 2021 - Probabilidade) O organizador de uma competição de lançamento de dardos pretende tornar o campeonato mais competitivo. Pelas regras atuais da competição, numa rodada, o jogador lança 3 dardos e pontua caso acerte pelo menos um deles no alvo. O organizador considera que, em média, os jogadores têm, em cada lançamento, 1/2 de probabilidade de acertar um dardo no alvo.
A fim de tornar o jogo mais atrativo, planeja modificar as regras de modo que a probabilidade de um jogador pontuar em uma rodada seja igual ou superior a 9/10. Para isso, decide aumentar a quantidade de dardos a serem lançados em cada rodada. Com base nos valores considerados pelo organizador da competição, a quantidade mínima de dardos que devem ser disponibilizados em uma rodada para tornar o jogo mais atrativo é
A) 2.
B) 4.
C) 6.
D) 9.
E) 10.
(ENEM - 2020 - Probabilidade) Suponha que uma equipe de corrida de automóveis disponha de cinco tipos de pneu (I, II, III, IV, V), em que o fator de eficiência climática EC (índice que fornece o comportamento do pneu em uso, dependendo do clima) é apresentado:
• EC do pneu I: com chuva 6, sem chuva 3;
• EC do pneu II: com chuva 7, sem chuva –4;
• EC do pneu III: com chuva –2, sem chuva 10;
• EC do pneu IV: com chuva 2, sem chuva 8;
• EC do pneu V: com chuva –6, sem chuva 7.
O coeficiente de rendimento climático (CRC) de um pneu é calculado como a soma dos produtos dos fatores de EC, com ou sem chuva, pelas correspondentes probabilidades de se ter tais condições climáticas: ele é utilizado para determinar qual pneu deve ser selecionado para uma dada corrida, escolhendo-se o pneu que apresentar o maior CRC naquele dia. No dia de certa corrida, a probabilidade de chover era de 70% e o chefe da equipe calculou o CRC de cada um dos cinco tipos de pneu. O pneu escolhido foi
A) I.
B) II.
C) III.
D) IV.
E) V.
(ENEM - 2020 - Probabilidade) O Estatuto do Idoso, no Brasil, prevê certos direitos às pessoas com idade avançada, concedendo a estas, entre outros benefícios, a restituição de imposto de renda antes dos demais contribuintes. A tabela informa os nomes e as idades de 12 idosos que aguardam suas restituições de imposto de renda. Considere que, entre os idosos, a restituição seja concedida em ordem decrescente de idade e que, em subgrupos de pessoas com a mesma idade, a ordem seja decidida por sorteio.
Nessas condições, a probabilidade de João ser a sétima pessoa do grupo a receber sua restituição é igual a